\qquad
Grade: XII
Holiday-Work

Subject: MATHEMATICS

Each Carries One marks

Q. 1 Let $\mathrm{A}=\{1,2,3\}$ and let $\mathrm{R}=\{(1,1),(2,2),(3,3),(1,3),(3,2),(1,2)\}$. Then, R is
Q. 2 Let S be the set of all straight lines in a plane. Let R be a relation on S defined by a $\mathrm{R} \mathrm{b} \Gamma \mathrm{a} \backslash \mathrm{b}$. Then, R is
Q. 3 Let S be the set of all real numbers and let R be a relation on S, defined by a $R b(1+a b)>0$. Then, R is
Q. 4 Show that $\cos ^{-1}\left\{\frac{-\pi}{3}\right\} \neq \frac{-\pi}{3}$ and find its value.
Q. 5 Show that $\sin ^{-1}\left\{\frac{3 \pi}{4}\right\} \neq \frac{3 \pi}{4}$ and find its value.
Q. 6 Show that $\tan ^{-1}\left\{\frac{5 \pi}{6}\right\} \neq \frac{5 \pi}{6}$ and find its value
Q. 7 Evaluate: $\sin \left\{\frac{\pi}{3}-\sin ^{-1} \frac{-1}{2}\right\}$
Q. 8 If a matrix has 6 elements, write all possible order it can have?
Q. 9 If order of matrix A is 2×3 and order of matrix B is $3 x 4$, find the order of $A B$.
Q. 10

Write the value of $x+y+z$ if $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$

Each Carries Two marks

Q. 11 Let $R=\{(a, b): a, b Y N$ and $a+3 b=12\}$. Find the domain and range of R.
Q. 12 Let $R=\{(a, b): a, b Y N$ and $b=a+5, a<4\}$. Find the domain and range of R.
Q. 13 Let R_{0} be the set of all nonzero real numbers. Show that $f: R_{0} \Delta R_{0}: f(x)=\frac{1}{x}$ is a one-one onto function.
Q. 14 Show that the function $f: R \Delta R: f(x)=3-4 x$ is one-one onto and hence bijective.
Q. 15 Let A and B be two nonempty sets. Show that the function
$\mathrm{f}:(\mathrm{A} \times \mathrm{B}) \Delta(\mathrm{B} \times \mathrm{A}): \mathrm{f}(\mathrm{a}, \mathrm{b})=(\mathrm{b}, \mathrm{a})$ is a bijective function.
Q. 16

If the matrix $\left[\begin{array}{ccc}0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0\end{array}\right]$ is skew symmetric, find $a+b+c$.
Q. 17 Evaluate: $\cos \left\{\sin ^{-1} \frac{3}{5}+\sin ^{-1} \frac{5}{13}\right\}$
Q. 18

Evaluate: $\tan ^{-1}\left\{2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right\}$
Q. 19 Prove that: $\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{3}{5}-\tan ^{-1} \frac{8}{19}=\frac{\pi}{4}$
Q. 20 Prove that: $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$

Each Carries three marks

Q. 21 Let A be the set of all points in a plane and let O be the origin. Show that the relation $R=\{(P, Q): P$, $\mathrm{Q} \mathrm{Y} \mathrm{A} \mathrm{and} \mathrm{OP}=\mathrm{OQ}\}$ is an equivalence relation.
Q. 22 Show that the function $\mathrm{f}: \mathrm{N} \Delta \mathrm{N}$, defined by
$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}\mathrm{x}+1, \quad \text { if } x \text { is odd } \\ \mathrm{x}-1, \text { if } x \text { is even }\end{array}\right.$ is one-one and onto.
Q. 23 Show that the signum function $\mathrm{f}: \mathrm{R} \Delta \mathrm{R}$, defined by
$f(x)= \begin{cases}1, & \text { if } x>0 \\ 0, & \text { if } x=0 \\ -1, & \text { if } x<0\end{cases}$
is neither one-one nor onto.
Q. 24 Prove that: $\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{3}{5}-\tan ^{-1} \frac{8}{19}=\frac{\pi}{4}$
Q. 25 Prove that: $2 \tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{7}=\tan ^{-1} \frac{31}{17}$
Q. 26 Prove that: $\sin ^{-1} \frac{3}{5}-\sin ^{-1} \frac{8}{17}=\cos ^{-1} \frac{84}{85}$
Q. 27

Prove that: $\tan ^{-1}\left(\frac{\sqrt{1+\mathrm{x}^{2}}+\sqrt{1-\mathrm{x}^{2}}}{\sqrt{1+\mathrm{x}^{2}}-\sqrt{1-\mathrm{x}^{2}}}\right)=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \mathrm{x}^{2}$
Q. 28 Prove that: $\tan ^{-1}\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}-\sqrt{1+x}}\right)=\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} x$
Q. 29

If $F(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$, then show that $F(x) \cdot F(y)=F(x+y)$
Q. 30

Using elementary operation, find the inverse of the matrix $\left[\begin{array}{ccc}2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2\end{array}\right]$

